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Theorem 5.4 (Bloch’s theorem). Let f € H(B1(0)) be such that f'(0) = 1. Then there exists p € C such
that Bgiﬁ(p) C f(B1(0)).
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Definition 5.6. Let G C C be an open set. We say that G is simply connected if it is path-connected
and every closed curve v C G can be contracted in GG to a point, that is, for every continuous curve
v :[0,1] = G with v(0) = ~(1) there exists a point z9 € G and a continuous map H : [0,1] x [0,1] = G
such that (

(i) H(0,t) t) vt € [0,1];

: (
(i) H(1,t) =z vt € 10,1]; "H oy '' [ Fopole
(iii) H(s,0) H(s1) Vse [0.1]. aabe i (*op Y]\
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Lemma 5.9. Let G C C be a simply connected domain and let f : G — C be holomorphic such that
{=1,1} N f(G) = 0. Then there exists a holomorphic function h : G — C such that

f = cos(h).
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